Új diffúziós paraméterek alkalmazása

Dudás Zoltán

Budapesti Műszaki és Gazdaságtudományi Egyetem, Anyagtudomány és Technológia Tanszék, 1111 Budapest, Bertalan L. u. 7., E-mail: dudas@eik.bme.hu

Absztrakt: A dolgozat három új olyan diffúziós paramétert mutat be, amelyek alkalmasak a hőmérséklet- és időértékek meghatározására azonos diffúziós folyamat esetén ugyanazon a helyen, ugyannál a koncentrációnál. A diffúziós paraméterek tartalmazhatnak hőmérsékletfüggő és hőmérséklet-független tényezőket is. A dolgozat demonstrálja, hogy a bemutatott mindhárom diffúziós paraméter egyszerű diffúziós számításoknál pontos eredményt szolgáltat. A dolgozat bizonyítja, hogy a gyakran alkalmazott Larson-Miller, illetve Hollomon-Jaffe paraméterekkel elvégzett számítások nem adnak pontos eredményt a diffúziós folyamat egyenleteihez alkalmazott hőmérséklet és időértékek esetén. Mérési eredmények felhasználásával a dolgozat szemlélteti a bemutatott diffúziós paraméterek jóságát és a diffúziós paraméterek, illetve a korábban alkalmazott Larson-Miller paraméterek

Kulcsszavak: Arrhenius összefüggés, diffúzió, diffúziós paraméter, Hollomon-Jaffe paraméter, Larson-Miller paraméter, megeresztés, időszilárdság, kúszás

1. Bevezetés

A dolgozat tartalma a gépészmérnökök (köztük elsősorban a melegszilárd- és a nemesíthető acélok szakterületén dolgozó szakemberek és hegesztőmérnökök) számára fontos és érdekes. Azt kívánja elvi megfontolások és mérési eredmények alapján is bizonyítani, hogy a szerző által is az egyetemen tanult Arrhenius egyenlet alapján évtizedek óta alkalmazott és elfogadott Larson-Miller (illetve Holomon-Jaffe) paraméterek egyenlete nem felel meg a diffúzió alapegyenletének, holott az általuk leírt folyamatok, diffúziós anyagmozgások eredményei.

A szerző a dolgozatban három olyan új diffúziós paraméter összefüggését mutatja be, amelyek mindegyike megfelel a diffúzió alapegyenletének is. Mindhárom diffúziós paraméter egyes részeiben hasonlít a Larson.Miller (illetve Holomon-Jaffe) paraméterekhez, de azoktól érdemi eltérést is mutat. Az ebben a dolgozatban is a szerző által bemutatott második (DP2) és harmadik (DP3) diffúziós paraméterekkel kapcsolatos megfontolásokat és számítási eredményeket az irodalom [1, 2] már tartalmazza. Az első diffúziós paraméterről publikáció korábban még nem jelent meg. Új elem a dolgozatban az is, hogy az alapösszefüggéseket mind tízes alapú, mind természetes logaritmus alapú formulákban is bemutatja.

2. A diffúziós paraméterek értelmezése

A dolgozatban a későbbiekben bemutatni kívánt diffúziós paraméterek a gépészmérnök társadalom által tanult (1) egyenlethez hasonlóak, amelyet a gépészmérnök kollégák Larson-Miller paraméterként (LMP), vagy Hollomon-Jaffe paraméterként (Hp) ismertek meg. A dolgozatban az ilyen tízes alapú logaritmussal felírt összefüggéseknél a továbbiakban mindkettő paraméterre az LMP jelöléssel hivatkozunk.

LMP = T ·
$$[lg(t) + C] = \frac{Q}{R} \cdot lg(e)$$
 Hp = $\frac{T + 273,15}{1000} \cdot [lg(t) + C] = \frac{Q}{R} \cdot lg(e)$ (1)

A magyar gépészmérnök gyakorlatban a tízes alapú logaritmust alkalmazó (1) összefüggés a megszokott. Az (1) összefüggésben

- T az adott hőmérséklet abszolút értéke
- t az adott hőmérséklethez tartozó időérték
- C a tízes alapú logaritmussal képzett anyagtól függő konstans
- Q a folyamat aktiválási energiája
- R az egyetemes gázállandó
- e a természetes alapszám: 2.718282.

Az irodalomban [3] az LMP paraméter természetes logaritmusú alakjából (2) egy 0,78 értékű konstanssal képzett változat (3) is szerepel.

LMP* = T · [ln(t) + C*] =
$$\frac{Q}{R}$$
 Hp* = $\frac{T + 273,15}{1000} \cdot [ln(t) + C*] = \frac{Q}{R}$ (2)

$$0.78 \cdot LMP^* = T \cdot \left[0.78 \cdot \ln(t) + 0.78 \cdot C^*\right] = 0.78 \cdot \frac{Q}{R} \qquad 0.78 \cdot Hp^* = \frac{T + 273.15}{1000} \cdot \left[0.78 \cdot \ln(t) + 0.78 \cdot C^*\right] = 0.78 \cdot \frac{Q}{R} \qquad (3)$$

ahol az új jelölések értelmezése:

LMP* és Hp* a természetes alapú logaritmussal képzett LMP értékei C* a természetes alapú logaritmussal képzett - anyagtól függő - konstans Az (1) egyenletet két (T_1,t_1) és (T_2,t_2) hőmérséklet és idő adatpárra felírva a (4) egyenlethez jutunk, ahol LMP1 a baloldali egyenlet és LMP2 a jobboldali összefüggés eredményeként kiadódó LMP számszerű értéke.

$$LMP1 = T_1 \cdot \left[\lg(t_1) + C \right] \qquad T_2 \cdot \left[\lg(t_2) + C \right] = LMP2 \tag{4}$$

Az (2) egyenletet két (T_1,t_1) és (T_2,t_2) hőmérséklet és idő adatpárra felírva az (5) egyenlet adódik ki, ahol LMP1* a baloldali egyenlet és LMP2* a jobboldali összefüggés eredményének számszerű értéke.

LMP1* =
$$T_1 \cdot [ln(t_1) + C^*] = T_2 \cdot [ln(t_2) + C^*] = LMP2^*$$
 (5)

A dolgozatban a két oldal megkülönböztetése azért fontos, mert a dolgozat lényege annak bizonyítása, hogy mindhárom új diffúziós paraméter mindkét oldalának számszerű értéke a diffúziós alapegyenletet teljesítő (T_1,t_1) és (T_2,t_2) hőmérséklet és idő adatpárra vonatkozóan mindkét oldalon azonos értékeket ad.

Az (1) összefüggéssel (tízes alapú logaritmussal) meghatározható LMP és a (2) egyenlettel (természetes alapú logaritmussal) kiszámítható LMP* két oldalán számított értékek ugyanezekkel a (T_1,t_1) és (T_2,t_2) hőmérséklet és idő adatpárokkal gyakorlatilag mindig eltérő eredményre vezetnek.

A dolgozat által bemutatott mindhárom új diffúziós paraméternek a matematikai formát illetően van az (1) és (2) egyenlethez hasonló változata, de mindhárom új diffúziós paraméter az (1) és a (2) összefüggéstől és egymástól is érdemben eltér.

Az első diffúziós paraméter (DP1 és DP1*) alakját a (6) és a (7) egyenletek szemléltetik.

$$DP1 = DP1 1 = T_1 \left[lg \cdot \frac{Q}{R} + T_2 \cdot lg(t_1) \right] = T_2 \left[lg \cdot \frac{Q}{R} + T_1 \cdot lg(t_2) \right] = DP12 \quad (6)$$

$$DP1^* = DP11^* = T_1 \left[\frac{Q}{R} + T_2 \cdot \ln(t_1) \right] = T_2 \left[\frac{Q}{R} + T_1 \cdot \ln(t_2) \right] = DP12^*$$
(7)

A DP1 és DP1* első diffúziós paraméterek bal oldala (DP11 és DP11*) és jobb oldala (DP12 és DP12*) abban egyezik meg a (4) egyenlettel, hogy a C konstansnak a Q/R lg(e) tényező mindkét oldalon megfelel. Az (5) egyenlet C* konstansának a (7) egyenletben a Q/R tényező a megfelelője.

A DP1 és DP1* első diffúziós paraméterek bal oldala (DP11 és DP11*) abban különbözik a (4) és az (5) egyenlettől, hogy a t_1 idő logaritmusa a T_2 értékkel van megszorozva.

A DP1 és DP1* első diffúziós paraméterek jobb oldala (DP12 és DP12*) abban különbözik a (4) és az (5) egyenlettől, hogy a t_2 idő logaritmusa a T₁ értékkel van megszorozva.

A második diffúziós paraméter (DP2 és DP2*) alakjait a (8) és (9) egyenletek szemléltetik.

$$DP2 = DP21 = T_1 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_1} + \frac{T_2}{T_1} \cdot lg(t_1) \right] = T_2 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_1} + lg(t_2) \right] = DP22$$
(8)

$$DP2^* = DP21^* = T_1 \left[\frac{Q}{R} \cdot \frac{1}{T_1} + \frac{T_2}{T_1} \cdot \ln(t_1) \right] = T_2 \left[\frac{Q}{R} \cdot \frac{1}{T_1} + \ln(t_2) \right] = DP22^*$$
(9)

A DP2 és DP2* második diffúziós paraméterek bal oldala (DP21 és DP21*) és jobb oldala (DP22 és DP22*) megegyezik abban, hogy a (4) egyenlet C konstansa helyén a Q/R lg(e) tényező és az (5) egyenlet C* konstansa helyén a Q/R tényező mindkét oldalon el van osztva a T_1 hőmérsékletértékkel (ami egyben azt is jelenti, hogy a C és a C* konstansok értékei hőmérsékletfüggők).

A DP2 és DP2* második diffúziós paraméterek jobb oldalánál (DP22 és DP22*) a t_2 idő logaritmusa megegyezik a (4) és az (5) egyenlettel.

A DP2 és DP2* második diffúziós paraméter bal oldala (DP21 és DP21*) abban különbözik a (4) és az (5) egyenlettől, hogy a t_1 idő logaritmusa a T_2/T_1 hányadossal van megszorozva.

A harmadik diffúziós paraméter (DP3 és DP3*) alakjait a (10) és (11) egyenletek szemléltetik.

$$DP3 = DP31 = T_1 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_2} + lg(t_1) \right] = T_2 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_2} + \frac{T_1}{T_2} \cdot lg(t_2) \right] = DP32 \quad (10)$$

$$DP3^{*} = DP31^{*} = T_{1} \left[\frac{Q}{R} \cdot \frac{1}{T_{2}} + \ln(t_{1}) \right] = T_{2} \left[\frac{Q}{R} \cdot \frac{1}{T_{2}} + \frac{T_{1}}{T_{2}} \cdot \ln(t_{2}) \right] = DP32^{*}$$
(11)

A DP3 és DP3* harmadik diffúziós paraméterek bal oldala (DP31 és DP31*) és jobb oldala (DP32 és DP32*) abban egyezik meg, hogy a (4) egyenlet C konstansa helyén a Q/R lg(e) tényező és az (5) egyenlet C* konstansa helyén a Q/R tényező mindkét oldalon el van osztva a T_2 hőmérsékletértékkel (ami egyben azt is jelenti, hogy a C és a C* konstansok értékei ebben az esetben is hőmérsékletfüggők).

A DP3 és DP3* harmadik diffúziós paraméterek bal oldalánál (DP31 és a DP31*) a t_1 idő logaritmusa megegyezik a (4) és az (5) egyenletekével.

A DP3 és DP3* harmadik diffúziós paraméter jobb oldala (DP32 és DP32*) abban különbözik a (4) és az (5) egyenletektől, hogy a t_2 idő logaritmusa a T_1/T_2 hányadossal van megszorozva.

A dolgozat – az elvi összehasonlítást követően – a diffúziós egyenletnek megfelelő (T_1,t_1) és (T_2,t_2) hőmérséklet és idő adatpárokra vonatkozóan konkrét két megeresztési diagram és egy idő-szilárdág diagram bemutatásával demonstrálja az LMP és az új DP1, DP2, DP3 diffúziós paraméterek értékei közötti eltéréseket.

2.1. A diffúziós alapegyenlet megoldása

Az időfüggő diffúziós alapegyenlet megoldását azonos (x_1) távolságban azonos (C_1) koncentráció esetén az irodalomban [4, 5] megtalálható (12) és (13) egyenletek írják le.

$$C_{1} = \frac{C_{0}}{2} \left[1 - \operatorname{erf}\left(\frac{x_{1}}{2\sqrt{D_{1} \cdot t_{1}}}\right) \right]$$
(12)

$$C_{1} = \frac{C_{0}}{2} \left[1 - \operatorname{erf}\left(\frac{x_{1}}{2\sqrt{D_{2} \cdot t_{2}}}\right) \right]$$
(13)

Azonos koncentráció esetén a Gauss-féle hibaintegrál belső függvényértékei is megegyeznek. Azonos koncentráció és azonos távolság együttes feltételezésével az egyszerű alakú (14) összefüggés lesz érvényes.

$$\mathbf{D}_1 \cdot \mathbf{t}_1 = \mathbf{D}_2 \cdot \mathbf{t}_2 \tag{14}$$

A T₁ hőmérséklethez kapcsolódó D₁- és a T₁ hőmérséklettel jellemezhető D₂ diffúziós tényezőt a (15) egyenlet szerint felírva a (14) egyenlet a (16) egyenlet formáját veszi fel.

$$\mathbf{D}_{1} = \mathbf{D}_{0} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_{1}}\right) \text{ és a } \mathbf{D}_{2} = \mathbf{D}_{0} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_{2}}\right)$$
(15)

$$\mathbf{D}_{0} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_{1}}\right) \cdot \mathbf{t}_{1} = \mathbf{D}_{0} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_{2}}\right) \cdot \mathbf{t}_{2}$$
(16)

A (16) összefüggést a D_0 tényezővel mindkét oldalon elosztva ahhoz a (17) formulához jutunk, amely alkalmas arra, az azonos diffúziós folyamathoz tartozó különböző hőmérséklet és idő értékpárok (T₁;t₁ és T₂;t₂) valamelyik hiányzó tényezője meghatározható legyen.

$$\exp\left(-\frac{Q}{R}\cdot\frac{1}{T_1}\right)\cdot t_1 = \exp\left(-\frac{Q}{R}\cdot\frac{1}{T_2}\right)\cdot t_2$$
(17)

A (17) összefüggés mindkét oldalának tízes alapú logaritmusát képezve a (18) formula alakul ki.

$$-\lg e \cdot \frac{Q}{R} \cdot \frac{1}{T_{1}} + \lg(t_{1}) = -\lg e \cdot \frac{Q}{R} \cdot \frac{1}{T_{2}} + \lg(t_{2})$$
(18)

A (17) egyenlet természetes alapú logaritmusát képezve a (19) egyenlethez jutunk.

$$-\frac{Q}{R} \cdot \frac{1}{T_1} + \ln(t_1) = -\frac{Q}{R} \cdot \frac{1}{T_2} + \ln(t_2)$$
(19)

A (18) és a (19) formulák mindkét oldaláról a negatív előjelű tényezőket a túloldalon elhelyezve jönnek létre a (20) és a (21) egyenletek.

$$P_{\rm D} = \lg e \cdot \frac{Q}{R} \cdot \frac{1}{T_2} + \lg(t_1) = \lg e \cdot \frac{Q}{R} \cdot \frac{1}{T_1} + \lg(t_2)$$
(20)

$$P_{D}^{*} = \frac{Q}{R} \cdot \frac{1}{T_{2}} + \ln(t_{1}) = \frac{Q}{R} \cdot \frac{1}{T_{1}} + \ln(t_{2})$$
(21)

A (20) egyenletből a Q/R lg(e) együtthatóval rendelkező tagokat és a (21) egyenletből a Q/R együtthatóval rendelkező tagokat összevonva láthatóvá válnak a (22) és (23) összefüggések, amely lehetővé teszi, hogy a diffúziós alapegyenletnek megfelelően (adott koncentráció és távolság esetén) a $(T_1;t_1)$ és $(T_2;t_2)$ adatpárok valamelyik tagját (a többi három ismeretében) kiszámítsuk, meghatározzuk.

A diffúziós feltételeket teljesítő (22) egyenlet mindkét oldalának értéke T₂=500°C (773°K); t₂ = 20,14 s és T₁=400°C (673°K); t₁ = 1293,58 s esetén: 4.16246* lg(e) = 4.16246*0.434295 = 1,80773 érték.

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

$$\lg \mathbf{e} \cdot \frac{\mathbf{Q}}{\mathbf{R}} \cdot \left(\frac{1}{\mathbf{T}_2} - \frac{1}{\mathbf{T}_1}\right) = \lg(\mathbf{t}_2) - \lg(\mathbf{t}_1) \tag{22}$$

$$\frac{Q}{R} \cdot \left(\frac{1}{T_2} - \frac{1}{T_1}\right) = \ln(t_2) - \ln(t_1)$$
(23)

A diffúziós feltételeket ugyancsak teljesítő (23) egyenletek mindkét oldalának értéke T₂=500°C (773°K); t₂ = 20,14 s és T₁=400°C (673°K); t₁ = 1293,58 s esetén: 1,80773/lg(e) = 1,80773/0.434295 = 4.16246 érték.

A (22) egyenlet átrendezésével – különböző (T_1,t_1) és (T_2,t_2) adatpárok ismeretében – a Q/R lg(e) együttható is meghatározható a (24) összefüggéssel.

$$\lg e \cdot \frac{Q}{R} = \frac{\lg(t_2) - \lg(t_1)}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$
(24)

A (24) egyenlet alapján a T₂=500°C (773°K); t₂ = 20,14 s és T₁=400°C (673°K); t₁ = 1293,58 s adatpárokkal meghatározott lg(e) Q/R értéke: 9404,3.

A (23) egyenlet átrendezésével – különböző $(T_1;t_1)$ és $(T_2;t_2)$ adatpárok ismeretében – a Q/R együttható határozható meg a (25) összefüggéssel.

$$\frac{Q}{R} = \frac{\ln(t_2) - \ln(t_1)}{\left(\frac{1}{T_2} - \frac{1}{T_1}\right)}$$
(25)

A (25) egyenlet alapján a T_2 =500°C (773°K); t_2 = 20,14 s és T_1 =400°C (673°K); t_1 = 1293,58 s adatpárokkal meghatározott Q/R értéke: 21654.3 (ami megegyezik az 9404,356/lg(e) = 9404,3/0.434295 = 21654,3 értékkel).

2.2. Az Arrhenius összefüggés elemzése

A szakirodalomból [6, 7] közismert Arrhenius összefüggés a (26) és a (27) formában felírva a kúszási jelenséghez kötődően a kúszási alakváltozás sebességét írja le.

$$\frac{d\varepsilon}{dt} = \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}}\right)$$
(26)

$$\frac{d\varepsilon}{dt} = A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T}\right)$$
(27)

A (26) és a (27) összefüggést egy adott T₁ hőmérsékleten véges t₁ időlépés alatt végbemenő lineárisan változó ε_1 alakváltozásra felírva a (28) és (29) egyenletekhez jutunk.

$$\frac{d\varepsilon}{dt} \approx \frac{\varepsilon_1}{t_1} = \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{T_1}\right)$$
(28)

$$\frac{d\varepsilon}{dt} \approx \frac{\varepsilon_1}{t_1} = A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_1}\right)$$
(29)

A (28) és (29) egyenletekből a véges t_1 időlépést a jobb oldalra áttéve a (30) és (31) összefüggések adódnak ki.

$$\varepsilon_1 = \mathbf{t}_1 \cdot \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_1}\right) \tag{30}$$

$$\varepsilon_1 = t_1 \cdot A \cdot \sigma^n \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_1}\right)$$
(31)

A (26) és (27) összefüggést egy a T_1 hőmérsékletnél magasabb T_2 hőmérsékleten (a t_1 időlépésnél rövidebb idejű) véges t_2 időlépés alatt végbemenő lineárisan változó ε_1 alakváltozásra felírva az (32) és (33) egyenletekhez jutunk, ahol az ε_1 alakváltozás mértéke azonos, de az alakváltozási sebesség (a kisebb értékű t_2 időlépés miatt) a t_1 időlépéshez képest megnő.

$$\frac{d\varepsilon}{dt} \approx \frac{\varepsilon_1}{t_2} = A \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_2}\right)$$
(32)

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

$$\frac{d\varepsilon}{dt} \approx \frac{\varepsilon_1}{t_2} = A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_2}\right)$$
(33)

Az (32) és (33) egyenletekből a véges t_2 időlépést a jobb oldalra áttéve a (34) és (35) összefüggések adódnak ki.

$$\varepsilon_1 = t_2 \cdot \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_2}\right) \tag{34}$$

$$\varepsilon_1 = t_2 \cdot A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_2}\right)$$
(35)

Mivel a (30)-(31), illetve a (34)-(25) egyenletekben szereplő ε_1 alakváltozás azonos, az összefüggések a (36) és (37) egyenleteknek megfelelően egyenlővé tehetők.

$$\varepsilon_1 = t_1 \cdot \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_1}\right) = t_2 \cdot \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_2}\right)$$
(36)

$$\varepsilon_1 = t_1 \cdot A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_1}\right) = t_2 \cdot A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_2}\right)$$
(37)

A (36) egyenletet az A tényezővel és a (37) egyenletet az (A σ^n) tényezővel elosztva eredményül mindkét esetben a (38) összefüggést kapjuk.

$$\mathbf{t}_1 \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_1}\right) = \mathbf{t}_2 \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_2}\right)$$
(38)

A (38) összefüggés annak a (17) diffúziós alapegyenletnek felel meg (egy azonos távolságban, azonos koncentrációjú helyen felírva), ahol azonos D₀ diffúziós tényező esetén a D₀ diffúziós tényező – az A, illetve a (A σ^n) tényezőkhöz hasonlóan – mindkét oldalon szerepel, és ezért kiesik.

2.3. Az Larson-Miller, illetve a Holomon-Jaffe paraméterek

A dolgozat célja összehasonlításokat tenni a LMP és az új diffúziós paraméterek között. Az irodalomban [6, 7], a Larson-Miller paraméterrel (illetve a Hollomon-Jaffe paraméterrel) kapcsolatos megfontolások ismertek.

Az irodalomban [6, 7] levezetett összefüggések megfontolásai a (30)-(31) öszszefüggésben látható adott (ε_1) alakváltozás helyett egységnyi alakváltozásra (39)-(40) vonatkoznak.

$$1 = t_1 \cdot \mathbf{A} \cdot \exp\left(-\frac{\mathbf{Q}}{\mathbf{R}} \cdot \frac{1}{\mathbf{T}_1}\right)$$
(39)

$$1 = t_1 \cdot A \cdot \sigma^n \cdot \exp\left(-\frac{Q}{R} \cdot \frac{1}{T_1}\right)$$
(40)

A (39)-(40) összefüggések logaritmusát képezve, az egységnyi alakváltozás logaritmusánál – a (41)-(42) egyenletnek megfelelően – nulla érték jelenik meg.

$$lg(1) = 0 = lg(t_1) + lg(A) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_1}$$
(41)

$$lg(1) = 0 = lg(t_1) + \{lg(A) + n \cdot lg(\sigma)\} - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_1}$$
(42)

A (39)-(40) összefüggések természetes logaritmusát képezve az ln(1) érték helyén is nulla érték jelenik meg, a (43)-(44) egyenleteknek megfelelően.

$$\ln(1) = 0 = \ln(t_1) + \ln(A) - \frac{Q}{R} \cdot \frac{1}{T_1}$$
(43)

$$\ln(1) = 0 = \ln(t_1) + \left\{ \ln(A) + n \cdot \ln(\sigma) \right\} - \frac{Q}{R} \cdot \frac{1}{T_1}$$
(44)

Az egy egységnyi alakváltozás felvétele a (41)-(42) egyenleteknél lehetővé teszi, hogy a Q/R lg(e) együtthatót a baloldalon elhelyezve a (45)-(46) egyenletek jobb oldalán az (1) összefüggés tényezői jelenjenek meg.

$$\frac{Q}{R} \cdot \lg(e) = T_1 \cdot \left[\lg(t_1) + \lg(A) \right] = LMP1$$
(45)

$$\frac{Q}{R} \cdot \lg(e) = T_1 \cdot \left[\lg(t_1) + \left\{ \lg(A) + n \cdot \lg(\sigma) \right\} \right] = LMP1$$
(46)

A (T_1,t_1) adatpárhoz tartozó értékeket nevezzük el a (45)-(46) összefüggéseknél LMP1-nek, azt jelölve, hogy a számítás eredménye tízes alapú logaritmus alkalmazásával a (T_1,t_1) adatpárhoz tartozik.

Az egy egységnyi alakváltozás felvétele a (43)-(44) egyenleteknél lehetővé teszi, hogy a Q/R együtthatót a baloldalon elhelyezve a (47)-(48) egyenletek jobb oldalán az (2) összefüggés tényezői szerepeljenek.

$$\frac{Q}{R} = T_1 \cdot \left[\ln(t_1) + \ln(A) \right] = LMP1 *$$
(47)

$$\frac{Q}{R} = T_1 \cdot \left[\ln(t_1) + \left\{ \ln(A) + n \cdot \ln(\sigma) \right\} \right] = LMP1 *$$
(48)

A (45) egyenlet alapján a (49) összefüggésben a Larson-Miller, illetve a Hollomon-Jaffe paraméterekben szereplő C konstans értéke a [lg(A)] értékének felelne meg.

$$\frac{Q}{R} \cdot lg(e) = T_1 \cdot [lg(t_1) + lg(A)] = T_1 \cdot [lg(t_1) + C] \Longrightarrow LMP1$$
(49)

A (47) egyenlet alapján az (50) összefüggésben a Larson-Miller, illetve a Hollomon-Jaffe paraméterekben szereplő C* konstans értéke az [ln(A)] értékének felelne meg.

$$\frac{\mathbf{Q}}{\mathbf{R}} = \mathbf{T}_1 \cdot \left[\ln(\mathbf{t}_1) + \ln(\mathbf{A}) \right] = \mathbf{T}_1 \cdot \left[\ln(\mathbf{t}_1) + \mathbf{C}^* \right] \Longrightarrow \mathbf{LMP1}^*$$
(50)

A (46) egyenlet alapján az (51) összefüggésben a Larson-Miller illetve a Hollomon-Jaffe paraméterekben szereplő C konstans értéke a $[lg(A)+n lg(\sigma)]$ értékének felelne meg.

$$\frac{Q}{R} \cdot lg(e) = T_1 \cdot \left[lg(t_1) + \left\{ lg(A) + n \cdot lg(\sigma) \right\} \right] = T_1 \cdot \left[lg(t_1) + C \right] \Longrightarrow LMP1 \quad (51)$$

A (48) egyenlet alapján az (52) összefüggésben a Larson-Miller, illetve a Hollomon-Jaffe paraméterekben szereplő C* konstans értéke a $[\ln(A)+n \ln(\sigma)]$ értékének felelne meg.

$$\frac{Q}{R} = T_1 \cdot \left[\ln(t_1) + \left\{ \ln(A) + n \cdot \ln(\sigma) \right\} \right] = T_1 \cdot \left[\ln(t_1) + C^* \right] \Longrightarrow LMP1^*$$
(52)

Az (51) egyenlet szerint az LMP1 számszerű értéke megegyezik a Q/R lg(e) értével (ami a diffúziós esetben 9404,356 volt).

$$9404,356 = 673 \cdot [lg(1293,58) + C] = LMP1$$
(53)

A T₁=400°C (673°K); $t_1 = 1293,58$ s adatpárt figyelembe véve az (53) egyenlet teljesüléséhez C értéke az (54) összefüggés szerint: 10,86.

$$\frac{9404,356}{673} - \lg(1293,58) = 10,86 = C \tag{54}$$

Az (52) egyenlet szerint az LMP1* számszerű értéke megegyezik a Q/R értével (ami a diffúziós esetben 21654.3 volt).

$$21654,3 = 673 \cdot \left[\ln(1293,58) + C^* \right] = LMP1^*$$
(55)

A T₁=400°C (673°K); t₁ = 1293,58 s adatpárt figyelembe véve az (55) egyenlet teljesüléséhez C* értéke az (56) összefüggés szerint: 25,01, ami megegyezik a C/lg(e) értékével.

$$\frac{21654,3}{673} - \ln(1293,58) = 25,01 = C^* = 10,86/\lg(e)$$
(56)

A (49) és (51) egyenleteket a (T_{2},t_{2}) adatpárral – tízes alapú logaritmus értékekkel – felírva az (57) és (58) egyenletekhez jutunk. A (T_{2},t_{2}) adatpár esetén az (57) és (58) egyenletekhez tartozó értéket a dolgozat LMP2 értékként kezeli.

$$\frac{Q}{R} \cdot lg(e) = T_2 \cdot \left[lg(t_2) + lg(A) \right] = T_2 \cdot \left[lg(t_2) + C \right] \Longrightarrow LMP2 \quad (57)$$

$$\frac{Q}{R} \cdot \lg(e) = T_2 \cdot \left[\lg(t_2) + \left\{ \lg(A) + n \cdot \lg(\sigma) \right\} \right] = T_2 \cdot \left[\lg(t_2) + C \right] \Longrightarrow LMP2$$
(58)

 $T_2=500$ °C (773 °K); $t_2 = 20,14$ s adatpárt figyelembe véve az (57) vagy az (58) egyenlet teljesüléséhez ugyanaz a C érték tartozik az (59) összefüggés szerint.

$$9404,356 = 773 \cdot [lg(20,14) + C] = LMP2$$
(59)

A T₂=500°C (673°K); $t_2 = 20,14$ s adatpárt figyelembe véve az (59) egyenlet teljesüléséhez C értéke az (60) összefüggés szerint is: 10,86.

$$\frac{9404,356}{773} - \lg(20,14) = 10,86 = C \tag{60}$$

Az (50) és (52) egyenleteket a (T_2,t_2) adatpárral – természetes alapú logaritmus értékekkel – felírva a (61) és (62) egyenletekhez jutunk. A (T_2,t_2) adatpár esetén az (61) és (62) egyenletekhez tartozó értéket a dolgozat LMP2* értékként kezeli.

$$\frac{Q}{R} = T_2 \cdot \left[\ln(t_2) + \ln(A) \right] = T_2 \cdot \left[\ln(t_2) + C^* \right] \Longrightarrow LMP2^*$$
(61)

$$\frac{Q}{R} = T_2 \cdot \left[\ln(t_2) + \left\{ \ln(A) + n \cdot \ln(\sigma) \right\} \right] = T_2 \cdot \left[\ln(t_2) + C^* \right] \Longrightarrow LMP2^* \quad (62)$$

T₂=500°C (773°K); t₂ = 20,14 s adatpárt figyelembe véve az (61) vagy a (62) egyenlet teljesüléséhez ugyanaz a C* értéke tartozik a (63) összefüggésnek megfelelően.

$$21654.3 = 773 \cdot [\ln(20,14) + C^*] = LMP2^*$$
(63)

A T₂=500°C (673°K); t₂ = 20,14 s adatpárt figyelembe véve a (63) egyenlet teljesüléséhez C* értéke az (64) összefüggés szerint is: 25,01.

$$\frac{21654,3}{773} - \ln(20,14) = 25,01 = C^*$$
(64)

339

A (49), (51), (53) és az (57)-(59) egyenletek alapján az látható, hogy az LMP1 és az LMP2 tényezők értéke csak akkor azonosan Q/R lg(e) = 9404,356 érték, ha a C értéke egyedül és kizárólag 10,86. Ha azonban a (T_{1},t_{1}) és (T_{2},t_{2}) adatpárok mellett a C = 10,86 értéktől eltérő konstanssal számolunk az LMP1 és az LMP2 értékek a két oldalon különbözők lesznek, vagyis az LMP1 és/vagy az LMP2 értékek a (49), (51), (53) és az (57)-(59) egyenletek baloldalán látható Q/R lg(e) értéktől különbözők lesznek.

Az (50), (52), (55) és a (61)-(63) egyenletek alapján az látható, hogy az LMP1* és az LMP2* tényezők értéke csak akkor azonosan Q/R = 21654,3 érték, ha a C* értéke egyedül és kizárólag 25,01. Ha azonban a (T_{1,t_1}) és (T_{2,t_2}) adatpárok mellett a C* = 25,01 értéktől eltérő konstanssal számolunk az LMP1* és az LMP2* értékek is a két oldalon különbözők lesznek, vagyis az LMP1* és/vagy az LMP2* értékek az (50, (52), (55) és a (61)-(63) egyenletek baloldalán látható Q/R értéktől különbözők lesznek.

A fenti anomália feloldása végett vizsgáljuk meg azt az esetet is, amikor az időegység alatt végbemenő alakváltozás nem egységnyi ($\epsilon_1 \neq 1$), hanem egy véges ϵ_1 érték. Ebben az esetben a (34)-(35) egyenletek alakja a (65)-(66), illetve a (67)-(68) összefüggéseknek megfelelővé változik.

$$\lg(\varepsilon_1) = \lg(t_1) + \lg(A) - \frac{Q}{R} \cdot \lg(e) \cdot \frac{1}{T_1} \neq 0$$
(65)

$$\lg(\varepsilon_1) = \lg(t_1) + \lg(A) + n \cdot \lg(\sigma) - \frac{Q}{R} \cdot \lg(e) \cdot \frac{1}{T_1} \neq 0$$
(66)

$$\ln(\varepsilon_1) = \ln(t_1) + \ln(A) - \frac{Q}{R} \cdot \frac{1}{T_1} \neq 0$$
(67)

$$\ln(\varepsilon_1) = \ln(t_1) + \ln(A) + n \cdot \ln(\sigma) - \frac{Q}{R} \cdot \frac{1}{T_1} \neq 0$$
(68)

A (T_1 , t_1) adatpárhoz tartozó (65)-(68) egyenleteket a (T_2 , t_2) adatpárra is felírva jutunk a (69)-(72) összefüggésekhez.

$$lg(t_{1}) + lg(A) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_{1}} = lg(t_{2}) + lg(A) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_{2}}$$
(69)

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

$$lg(t_1) + lg(A) + n \cdot lg(\sigma) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_1} = lg(t_2) + lg(A) + n \cdot lg(\sigma) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_2}$$
(70)

$$\ln(t_1) + \ln(A) - \frac{Q}{R} \cdot \frac{1}{T_1} = \ln(t_2) + \ln(A) - \frac{Q}{R} \cdot \frac{1}{T_2}$$
(71)

$$\ln(t_{1}) + \{\ln(A) + n \cdot \ln(\sigma)\} - \frac{Q}{R} \cdot \frac{1}{T_{1}} = \ln(t_{2}) + \{\ln(A) + n \cdot \ln(\sigma)\} - \frac{Q}{R} \cdot \frac{1}{T_{2}}$$
(72)

A (69) összefüggés mindkét oldalán a [lg(A)] tényező-, a (71) összefüggés mindkét oldalán az [ln(A)] tényező-, a (70) összefüggés mindkét oldalán a [lg(A)+n lg(σ)] tényező-, és a (72) összefüggés mindkét oldalán az [ln(A)+n ln(σ)] tényező kiejthető, és a megmaradó tagok ugyanazt a (73), illetve (74) formulát jelenítik meg, mint a (18) és (19) diffúziós egyenletek.

$$lg(t_{1}) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_{1}} = lg(t_{2}) - \frac{Q}{R} \cdot lg(e) \cdot \frac{1}{T_{2}}$$
(73)

$$\ln(t_1) - \frac{Q}{R} \cdot \frac{1}{T_1} = \ln(t_2) - \frac{Q}{R} \cdot \frac{1}{T_2}$$
(74)

A nem l értékű /lg(1) =nulla/ alakváltozáshoz tartozó (73)-(74) összefüggésekből a kifejezetten l értékű /lg(1) =nulla/ alakváltozáshoz tartozó – és a (49), (51) és (50), (52), illetve a (57)-(58) és (61)-(62) egyenletek által felírt Larson-Miller illetve a Hollomon-Jaffe paraméterekben szereplő – C konstans értékkel jellemzett [lg(A)] és a [lg(A)+n lg(σ)] tényezők továbbá a – C* konstans értékkel jellemzett [ln(A)] és a [ln(A)+n ln(σ)] tényezők teljesen hiányoznak.

A (73) és (74) összefüggésnél a negatív tagoknak a másik oldalra történő átvitelével adódnak ki a (75) és (76) egyenletek, amelyek mindhárom új diffúziós paraméter alapösszefüggései.

$$\lg(t_{1}) + \frac{Q}{R} \cdot \lg(e) \cdot \frac{1}{T_{2}} = \lg(t_{2}) + \frac{Q}{R} \cdot \lg(e) \cdot \frac{1}{T_{1}}$$
(75)

$$\ln(t_1) + \frac{Q}{R} \cdot \frac{1}{T_2} = \ln(t_2) + \frac{Q}{R} \cdot \frac{1}{T_1}$$
(76)

341

2.4. Az első diffúziós paraméter értelmezése

A (75) és (76) összefüggéseket megszorozva mindkét oldalon a T_1 és a T_2 hőmérsékletértékekkel is, jutunk el az első diffúziós paraméter (77) és (78) összefüggéseihez, amelyek megegyeznek a 2. pontban bemutatott (6) és (7) egyenletekkel.

A (77) összefüggés bal oldalán látható DP11 paraméter és a (77) összefüggés jobb oldalán található DP12 paraméter minden esetben azonos értékű.

$$DP1 = DP1 1 = T_1 \left[lge \cdot \frac{Q}{R} + T_2 \cdot lg(t_1) \right] = T_2 \left[lge \cdot \frac{Q}{R} + T_1 \cdot lg(t_2) \right] = DP12 \quad (77)$$

A (78) összefüggés bal oldalán látható DP11* paraméter és a (78) összefüggés jobb oldalán található DP12* paraméter is minden esetben azonos értékű.

DP1* = DP1 1* =
$$T_1 \left[\frac{Q}{R} + T_2 \cdot \ln(t_1) \right] = T_2 \left[\frac{Q}{R} + T_1 \cdot \ln(t_2) \right] = DP12*$$
 (78)

A T₁=400°C (673°K); t₁ = 1293,58 s és a T₂=500°C (773°K); t₂ = 20,14 s adatpár esetén a Q/R lg(e) = 9404.3 értéket figyelembe véve és tízes alapú logaritmussal számítva a DP1 paraméter a (79) egyenlet mindkét oldalán azonosan 7 947 976 értékű.

A Q/R = 21654.3 értéket figyelembe és természetes logaritmussal számítva a DP1* paraméter a (80) egyenlet mindkét oldalán azonosan 18 300 892 értékű.

$$DP1 = 673 \cdot [9404,356 + 773 \cdot 1g(1293,58)] = 773 \cdot [9404,356 + 673 \cdot 1g(20,14)] = 7947976$$
(79)

 $DP1^* = 673 \cdot [21654, 3 + 773 \cdot \ln(1293, 58)] = 773 \cdot [21654, 3 + 673 \cdot \ln(20, 14)] = 18300892$ (80)

A (81) összefüggés arra mutat rá, hogy a tízes alapú logaritmussal számított DP1 diffúziós paraméter értéke a természetes logaritmussal számított DP1* paraméternek a lg(e) szerese.

$$DP1 = DP1 * \cdot lg(e) = 18300892 \cdot 0.434295 = 7947976$$
(81)

2.5. A második diffúziós paraméter értelmezése

A DP1 paraméter (77) és/vagy a DP1* paraméter (78) összefüggését mindkét oldalon elosztva a T₁ hőmérsékletértékekkel, kapjuk meg a második diffúziós paraméter (82) és (83) összefüggéseit, amelyek megegyeznek a 2. pontban bemutatott (8) és (9) egyenletekkel.

Az (82) összefüggés bal oldalán látható DP21 paraméter és a (82) összefüggés jobb oldalán található DP22 paraméter is azonos értékű.

$$DP2 = DP21 = T_1 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_1} + \frac{T_2}{T_1} \cdot lg(t_1) \right] = T_2 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_1} + lg(t_2) \right] = DP22 \quad (82)$$

A T₁=400°C (673°K); t₁ = 1293,58 s és a T₂=500°C (773°K); t₂ = 20,14 s adatpár és a Q/R lg(e) = 9404.356 érték figyelembe vételével a DP2 paraméter értékeként az (83) egyenlet mindkét oldalán azonosan a 11 809.77 érték áll elő.

$$DP2 = 673 \cdot \left[9404,356 \cdot \frac{1}{673} + \frac{773}{673} \cdot \lg(1293,58) \right] = 773 \cdot \left[9404,356 \cdot \frac{1}{673} + \lg(20,14) \right] = 11809.77$$
 (83)

A tízes alapú logaritmus értékekkel a (82) egyenlet szerint meghatározott DP2 diffúziós paraméter párja a Q/R = 21654.3 értéket figyelembe vevő- és természetes alapú logaritmussal meghatározott DP2* diffúziós paraméter. A (84) egyenlet bal oldalán látható DP21* paraméter és az összefüggés jobb oldalán található DP22* paraméter is azonos értékű.

$$DP2^{*} = DP21^{*} = T_{1} \left[\frac{Q}{R} \cdot \frac{1}{T_{1}} + \frac{T_{2}}{T_{1}} \cdot \ln(t_{1}) \right] = T_{2} \left[\frac{Q}{R} \cdot \frac{1}{T_{1}} + \ln(t_{2}) \right] = DP22^{*}$$
(84)

A T₁=400°C (673°K); t₁ = 1293,58 s és a T₂=500°C (773°K); t₂ = 20,14 s adatpár és a Q/R = 21654.3 érték figyelembe vételével a DP2* paraméter értékeként az (85) egyenlet mindkét oldalán azonosan a 27193.00 érték áll elő.

$$DP2^* = 673 \cdot \left[21654.3 \cdot \frac{1}{673} + \frac{773}{673} \cdot \ln(1293,58) \right] = 773 \cdot \left[21654.3 \cdot \frac{1}{673} + \ln(20,14) \right] = 27193.00$$
(85)

A (86) összefüggés arra mutat rá, hogy a tízes alapú logaritmussal számított DP2 diffúziós paraméter értéke is a természetes logaritmussal számított DP2* paraméternek a lg(e) szerese.

$$DP2 = DP2 * \cdot lg(e) = 27193.00 \cdot 0.434295 = 11809.77$$
(86)

2.6. A harmadik diffúziós paraméter értelmezése

A DP1 paraméter (77) és a DP1* paraméter (78) összefüggéseit mindkét oldalon elosztva a T_2 hőmérsékletértékekkel, jön létre a harmadik diffúziós paraméter (87) és (89) összefüggése, amelyek megegyeznek a 2. pontban bemutatott (10) és (11) egyenletekkel.

Az (87) összefüggés bal oldalán látható DP31 paraméter és az (87) összefüggés jobb oldalán található DP32 paraméter is azonos értékű.

$$DP3 = DP31 = T_1 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_2} + lg(t_1) \right] = T_2 \left[lg \, e \cdot \frac{Q}{R} \cdot \frac{1}{T_2} + \frac{T_1}{T_2} \cdot lg(t_2) \right] = DP32 \ (87)$$

A T₁=400°C (673°K); t₁ = 1293,58 s és a T₂=500°C (773°K); t₂ = 20,14 s adatpár és a Q/R lg(e) = 9404.356 érték figyelembe vételével a tízes alapú logaritmussal meghatározott DP3 paraméter értékeként a (88) egyenlet mindkét oldalán azonosan a 10 281.9 érték áll elő.

$$DP3 = 673 \cdot \left[9404,356 \cdot \frac{1}{773} + \lg(1293,58)\right] = 773 \cdot \left[9404,356 \cdot \frac{1}{773} + \frac{673}{773} \cdot \lg(20,14)\right] = 10281.99$$
 (88)

A (89) összefüggés bal oldalán látható DP31* paraméter és a (89) összefüggés jobb oldalán található DP32* paraméter is azonos értékű.

$$DP3^{*} = DP31^{*} = T_{1} \left[\frac{Q}{R} \cdot \frac{1}{T_{2}} + \ln(t_{1}) \right] = T_{2} \left[\frac{Q}{R} \cdot \frac{1}{T_{2}} + \frac{T_{1}}{T_{2}} \cdot \ln(t_{2}) \right] = DP32^{*}$$
(89)

A T₁=400°C (673°K); t₁ = 1293,58 s és a T₂=500°C (773°K); t₂ = 20,14 s adatpár és a Q/R = 21654.3 érték figyelembe vételével a DP3* paraméter értékeként az (90) egyenlet mindkét oldalán azonosan a 23675.15 érték áll elő.

$$DP3^* = 673 \cdot \left[21654, 3 \cdot \frac{1}{773} + \ln(1293, 58) \right] = 773 \cdot \left[21654.3 \cdot \frac{1}{773} + \frac{673}{773} \cdot \ln(20, 14) \right] = 23675, 15$$
(90)

A (91) összefüggés arra mutat rá, hogy a tízes alapú logaritmussal számított DP3 diffúziós paraméter értéke a természetes logaritmussal számított DP3* paraméternek a lg(e) szerese.

$$DP3 = DP3 * \cdot lg(e) = 23675.150.434295 = 10281.99$$
(91)

3. A diffúziós paraméterek és a Larson-Miller(Holomon-Jaffe) paraméterek értékeinek összehasonlítása diffúziós folyamatok mérési eredményeinek felhasználásával

A diffúziós paraméterek és a Larson-Miller (Holomon-Jaffe) paraméterek értékeinek összehasonlítását a dolgozat egy 0,35% C-tartalmú acél és egy 1080-as acél – edzést követő – megeresztésénél lejátszódó-, illetve egy kúszási folyamat időszilárdságához tartozó diffúziós folyamat mérési eredményeinek felhasználásával és feldolgozásával szemlélteti.

Mivel a fentiek alapján a tízes alapú logaritmussal számított (DP1, DP2 és DP3) diffúziós paraméterek nem függetlenek a természetes alapú logaritmussal számított (DP1*, DP2* és DP3*) diffúziós paraméterektől (DP1 = lg(e) DP1*, DP2 = lg(e) DP2* és DP3 = lg(e) DP3*), a mérési eredmények összehasonlítására csak a tízes alapú logaritmussal számított (DP1, DP2 és DP3) diffúziós paraméterek esetében kerül sor.

A mérési eredményekre illesztett számítások között először egy 0,35% Ctartalmú acél [8] és egy 1080-as edzett acél [9] különböző keménységértékeinek vizsgálatára kerül sor (különböző hőmérsékletű és idejű) megeresztés után.

Utoljára egy Fe-Cr-Ni ötvözet [3] idő-szilárdságának mérési eredményeinél mutatjuk be az új diffúziós paraméterek értékeit, amelyeket három különböző C konstans értékhez tartozó LMP értékekkel hasonlítunk össze.

3.1. Egy 0,35% C-tartalmú acél HB keménysége edzés és 350-650°C-on különböző ideig tartó megeresztés után

Verő József "Fémtan" című könyvének [8] 364. oldalán láthatók mérési eredmények 0,35% C-tartalmú acél keménységértékeiről edzés és 350-650°C-on különböző ideig tartó megeresztés után. (4. ábra).

A 4. ábrán látható egyenes szakaszok mért adatai alapján a 0,35% C-tartalmú acél HB keménysége látható a két végén a (92) és (93) egyenletnek megfelelő – a 10^{1} s és a 10^{6} s időértékekhez tartozó – HB(T) hatványfüggvényekkel felrajzolt értékekkel az 5. ábrán.

$$HB(T,101s) = 450 - 0,8221 \cdot (T - 350^{\circ}C)^{0,9186}$$
(92)

$$HB(T,10^{6}s) = 360 - 2,1004 \cdot (T - 350^{\circ}C)^{0,8074}$$
(93)

4. ábra 0,35% C-tartalmú acél HB keménysége edzés és 350-650°C –on különböző ideig tartó megeresztés után [8]

5. ábra 0,35% C-tartalmú acél HB keménysége a két végén meghatározott HB(T) hatványfügg-vényekkel felrajzolt értékekkel

Az 5. ábrán látható, hogy a – (92)-(93) és a (94) összefüggések alapján számított – HB keménységérték függvények alkalmassá tehetők arra, hogy kívánt HB keménységértékeknél a különböző hőmérsékletértékekhez tartozó időértékeket is a (95) egyenlet segítségével meghatározzuk.

$$HB(T, t_1) = \left(\frac{HB(T, 10^{1}s) - HB(T, 10^{6}s)}{lg(10^{1}) - lg(10^{6})}\right) \cdot (lg(t_1) - lg(10^{6})) + HB(T, 10^{6}s)$$
(94)

$$lg(t_1) = \frac{HB(T, t_1) - HB(T, 10^6 s)}{HB(T, 10^1 s) - HB(T, 10^6 s)} \cdot (lg(10^1) - lg(10^6)) + lg(10^6)$$
(95)

Az 5. ábra adatai alapján a (92)-(93) és a (94) összefüggésekkel – az 500, 450, 400, 350 és 300 értékű HB keménységekhez az időértékeket kiszámítva – a (24) egyenlet alapján meghatározott Q/R lg(e) tényező függvényében a HB keménységet a 6. ábra szemlélteti. A 6. ábrán (az 1. táblázat adatai alapján) látható, hogy a HB keménység a Q/R lg(e) tényező lineáris függvénye (A számított értékekre illeszkedő regressziós egyenes korrelációja: 1.)

6. ábra 0,35% C-tartalmú acél HB keménysége az összetartozó hőmérséklet és időpárokból meghatározott (lge Q/R) tényező függvényében

A 7. ábra a HB keménység értékét a (6) és a (77) egyenletek jobb és baloldali összefüggéseivel meghatározott DP11 és DP12 diffúziós paraméterek függvényében mutatja be. A 7. ábrán látható, hogy mindkét oldal (DP11 és DP12) számítási eredményei azonosak.

7. ábra A HB keménység a 0,35% C-tartalmú acél azonos HB keménységhez tartozó hőmérséklet és időpárjaiból meghatározott DP11 és DP12 diffúziós paraméterek függvényében

A 8. ábra a (8) és a (82) egyenletek jobb és baloldali összefüggéseivel meghatározott DP21 és DP22 diffúziós paraméterek értékeit, az (10) és a (87) egyenletek jobb és baloldali összefüggéseivel meghatározott DP31 és DP32 diffúziós paraméterek értékeit, és a (49), illetve a (57) egyenletekkel (C = 18, C = 20 és C = 22 felvett értékekkel) meghatározott Larson-Miller paraméter számítások értékeit szemlélteti.

A 8. ábrán és a 2. táblázatban látható, hogy a HB keménység a DP2 és DP3 diffúziós paraméterek függése mind a DP21, DP22 mind a DP31, DP32 oldalak számítási eredményeinél is azonos (A számított eredmények ugyanarra az egyenesre esnek).

8. ábra 0,35% C-tartalmú acél azonos keménységhez tartozó – hőmérséklet és időpárokból meghatározott – D21, DP22, DP31 és DP32 diffúziós paramétereinek összehasonlítása különböző konstansokkal számított LMP értékekkel

A 8. ábrán látható a megeresztett martenzit azonos HB keménységekhez tartozó – hőmérséklet és időpárokból meghatározott – D21, DP22, DP31 és DP32 diffúziós paramétereinek összehasonlítása a különböző konstansokkal számított LMP értékekkel.

Az LMP1 tényezők értékei (folytonos vonalak) a kisebb hőmérséklethez, az LMP2 tényezők értékei (szaggatott vonalak) a nagyobb hőmérséklethez tartoznak. Amint a 8. ábra és a 3. táblázat tartalma jól szemlélteti, a Larson-Miller összefüggés bal oldala és jobb oldala sem a C = 18, sem a C = 20, sem a C = 22 konstanshoz tartozó számítási értékeknél nem ad azonos értékeket eredményül. A DP2 és DP3 paraméterek számításánál a különböző keménységértékekhez a 6. ábrán és az 1. táblázatban bemutatott Q/R lg(e) tényezők lettek figyelembe véve. Ez az oka annak, hogy a DP2 és DP3 egyenesek gradiense kisebb, mint az LMP1 és az LMP2 függvényeké.

Az LMP1 és LMP2 paraméterek nem egyezésének oka valójában az, hogy az (1) Larson-Miller (Holomon-Jaffe) összefüggés elvi hibát tartalmaz. Egyetlen C érték kivételével (4. táblázat) az LMP paraméterek két oldalának értékei nem felelnek meg a diffúzió alapegyenletének, és nem is egyeznek meg egymással.

A 8. ábrában látható azonos keménységekhez tartozó hőmérséklet és időadatokat az 1. táblázat tartalmazza. A számított diffúziós paraméterek adatai a 2. táblázatban találhatók meg. A C = 18, C = 20 és C = 22 konstansokkal számított LMP adatok a 3. táblázatban kaptak helyet.

HB	$T_1[K]$	t ₁ [s]	T ₂ [K]	t ₂ [s]	lg(e) Q/R
500	623	0.01668101	923	8.53E-07	8225.4
450	623	10	923	4.52E-05	10244.8
400	623	5994.8425	923	0.002395	12264.4
350	623	3593813.66	923	0.126896	14283.9
300	623	2154434690	923	6.723358	16303.5

1. táblázat Azonos HB keménységekhez tartozó hőmérséklet és időadatok

2. táblázat A számított diffúziós paraméterek adatai

HB	DP11	DP12	DP21	DP22	DP31	DP32
500	4 102 150	4 102 150	6584.51	6584.61	4444.37	4444.44
450	6 957 539	6 957 539	11167.80	11167.82	7537.96	7537.98
400	9 813 053	9 813 053	15751.29	15751.31	10631.69	10631.71
350	12 668 504	12 668 504	20334.68	20334.67	13725.36	13725.35
300	15 524 018	15 524 018	24918.17	24918.16	16819.09	16819.09

3. táblázat A C = 18, C = 20 és C = 22 konstansokkal számított LMP adatok

HB	LMP1(18)	LMP2(18)	LMP1(20)	LMP2(20)	LMP1(22)	LMP2(22)
500	10106.44	11012.35	11352.44	12858.35	12598.44	14704.35
450	11837.00	12603.73	13083.00	14449.73	14329.00	16295.73
400	13567.56	14195.10	14813.56	16041.10	16059.56	17887.10
350	15298.11	15786.48	16544.11	17632.48	17790.11	19478.48
300	17028.67	17377.86	18274.67	19223.86	19520.67	21069.86

4. táblázat A két oldal azonos értékéhez tartozó C konstansok és LMP értékek

HB	С	LMP(C)
500	14.98	8225.50
450	15.44	10244.82
400	15.91	12264.43
350	16.37	14283.89
300	16.84	16303.50

A 4. táblázat azokat a C konstans és LMP adatokat mutatja be, amelyeknél az LMP összefüggés két oldala azonos. Az LMP(C) értékek ebben az esetben a lg(e) Q/R tényezővel egyeznek meg.

9. ábra 0,35% C-tartalmú acél HB keménysége az azonos diffúziós paraméter értéket szolgáltató hőmérséklet és időpárokból meghatározott C konstans függvényében

A 9. ábra szemlélteti a 0,35% C-tartalmú acél keménységét az azonos LMP1 és LMP2 paraméter értéket szolgáltató hőmérséklet és időpárokból meghatározott C konstans függvényében. Az LMP(C) jelzésű függvény helye a 8. ábrában is látható nagy üres (fehér) körökkel szemléltetve. Egyedül ennél a függvényértéknél egyezik meg a LMP két oldala.

A 8. ábrában látható azonos keménységekhez tartozó hőmérséklet és időadatokat az 1. táblázat tartalmazza. A számított diffúziós paraméterek adatai a 2. táblázatban találhatók meg. A C = 18, C = 20 és C = 22 konstansokkal számított LMP adatok a 3. táblázatban kaptak helyet.

A 4. táblázat azokat a C konstans és LMP adatokat mutatja be, amelyeknél az LMP összefüggés két oldala azonos. Az LMP(C) értékek ebben az esetben a lg(e) Q/R tényezővel egyeznek meg.

A 9. ábra szemlélteti a 0,35% C-tartalmú acél keménységét az azonos LMP1 és LMP2 paraméter értéket szolgáltató hőmérséklet és időpárokból meghatározott C konstans függvényében. Az LMP(C) jelzésű függvény helye a 8. ábrában is látható nagy üres (fehér) körökkel szemléltetve. Egyedül ennél a függvényértéknél egyezik meg a LMP két oldala.

3.2. Megeresztett martenzit HRC keménysége a megeresztési hőmérséklet és idő függvényében egy 1080 acélnál

R. A. Flinn, P. K. Trojan "Engineering Materials and their Applications" című könyvének [9] 233. oldalán láthatók az előző mérési eredményekhez hasonló jellegű (HB helyett HRC) mérési eredmények egy 1080 acél HRC keménységértékeiről edzés és 204-538°C –on különböző ideig tartó megeresztés után. (10. ábra).

A 10. ábra egyenes szakaszain mért adatok alapján a 1080 acél HRC keménysége látható – a 10^2 s és a 10^4 s időértékekhez tartozó (96) és (97) összefüggésekkel meghatározott HRC(T) hatványfüggvényekkel felrajzolt értékekkel – a 11. ábrán.

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

10. ábra A megeresztett martenzit HRC keménysége a megeresztési hőmérséklet és idő függvényében (1080 acélnál) [9]

$$HRC(10^{2}s) = 61,5 - 0,0005 \cdot (T - 204^{\circ}C)^{1,8035}$$
(96)

 $HRC(10^{4}s) = 60,0 - 0,0145 \cdot (T - 204^{\circ}C)^{1.2955}$ (97)

11. ábra A megeresztett martenzit HRC keménysége a megeresztési hőmérséklet és idő függvényében (az 1080 acélnál), a két végén meghatározott HRC(T) hatványfüggvényekkel felrajzolt értékekkel

Az 11. ábrán látható – a (96)-(97) és a (98) összefüggés alapján számított – HRC keménységérték függvények alkalmassá tehetők arra, hogy kívánt HRC keménységértékeknél a különböző hőmérsékletértékekhez tartozó időértékeket is a (99) egyenlet segítségével meghatározzuk.

$$HRC(T, t_1) = \left(\frac{HRC(T, 10^2 s) - HRC(T, 10^4 s)}{lg(10^2) - lg(10^4)}\right) \cdot (lg(t_1) - lg(10^4)) + HRC(T, 10^4 s)^{(98)}$$

$$lg(t_1) = \frac{HRC(T, t_1) - HRC(T, 10^4 s)}{HRC(T, 10^2 s) - HRC(T, 10^4 s)} \cdot (lg(10^2) - lg(10^4)) + lg(10^4)$$
(99)

A HRC keménységet – a 10^2 és a 10^4 s időértékekhez tartozó különböző hőmérsékletértékekkel – a (24) egyenlet alapján meghatározott Q/R lg(e) tényező függvényében a 12. ábra és az 5. táblázat szemlélteti. Az ábrán látható, hogy ebben az esetben is a függvény jellege egyenes. (A számított értékekre illeszkedő regressziós egyenes korrelációja: 1.)

12. ábra A megeresztett martenzit HRC keménysége az azonos HRC keménységhez tartozó hőmérséklet és időpárokból meghatározott (lge Q/R) tényező függvényében (1080 acél)

A 13. ábra a (6) és a (76) egyenletek jobb és baloldali összefüggéseivel meghatározott DP11 és DP12 diffúziós paraméterek értékeit mutatja be. A 12. ábrán látható, hogy az értékek egybeesnek. Mindkét oldal számítási eredményei azonosak.

A 14. ábra a (8) és az (82) egyenletek jobb és baloldali összefüggéseivel meghatározott DP21 és DP22 diffúziós paraméterek értékeit, a (10) és az (87) egyenletek jobb és baloldali összefüggéseivel meghatározott DP31 és DP32 diffúziós paraméterek értékeit, és a (49), illetve a (57) egyenletekkel (C =18, C = 20 és C = 22 felvett értékekkel) meghatározott Larson-Miller paraméter számítások értékeit szemlélteti.

A 14. ábrán és a 6. táblázatban is látható, hogy a DP2 és DP3 diffúziós paraméterek mindkét oldalának számítási eredményei azonosak (A számított eredmények ugyanarra az egyenesre esnek).

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

13. ábra A megeresztett martenzit HRC keménysége az azonos keménységhez tartozó hőmérséklet és időpárokból meghatározott DP11 és DP12 diffúziós paraméterek függvényében (1080 acél)

A 14. ábrában az LMP1 tényezők értékei (folytonos vonalak) a kisebb hőmérséklethez, az LMP2 tényezők értékei (szaggatott vonalak) a nagyobb hőmérséklethez tartoznak. Amint a 8. ábrához hasonlóan a 14. ábra és a 7. táblázat is jól szemlélteti, a Larson-Miller összefüggés bal oldala és jobb oldala mind a C = 18, mind a C = 20, mind a C = 22 konstanshoz tartozó számítási értékeknél különböző értékeket adnak eredményül. A DP2 és DP3 paraméterek számításánál a különböző keménységértékekhez a 12. ábrán bemutatott Q/R lg(e) tényezők lettek figyelembe véve. Ez az oka annak, hogy a DP2 és DP3 egyenesek gradiense ennél a megoldásnál is kisebb.

A 8. táblázat azokat a C konstans és LMP adatokat mutatja be, amelyeknél az LMP összefüggés két oldala azonos. Az LMP(C) értékek ebben az esetben is a lg(e) Q/R tényezővel egyeznek meg.

Az LMP1 és LMP2 paraméterek nem egyezésének oka ebben az esetben is az, hogy az (1) Larson-Miller (Holomon-Jaffe) összefüggés elvi hibát tartalmaz. Egyetlen C érték kivételével az LMP paraméterek két oldalának értékei nem felelnek meg a diffúzió alapegyenletének, és nem is egyeznek meg egymással.

HRC	T1	t1	T2	t2	Lge*Q/R
70	673	0.0122308	773	0.00153	4696.1
60	673	3.9776	773	0.1755	7050.9
50	673	1293.58	773	20.14	9404.4
40	673	420388.87	773	2310.52	11756.9
30	673	136813664	773	265070	14112.6

5. táblázat Azonos HRC keménységekhez tartozó hőmérséklet és időadatok

14. ábra A megeresztett martenzit azonos HRC keménységhez tartozó hőmérséklet és időpárokból meghatározott D21, DP22, DP31 és DP32 diffúziós paramétereinek összehasonlítása különböző konstansokkal számított LMP értékekkel (1080 acél)

6. táblázat A HRC keménységértékekhez tartozó (számított) diffúziós paraméterek adatai

HRC	DP11	DP12	DP21	DP22	DP31	DP32
70	2 165 514	2 165 514	3217.70	3217.70	2801.44	2801.44
60	5 057 196	5 057 196	7514.41	7514.41	6542.30	6542.30
50	7 948 006	7 948 006	11809.82	11809.82	10282.03	10282.03
40	10 837 980	10 837 980	16103.98	16103.99	14020.67	14020.68
30	13 730 430	13 730 430	20401.83	20401.83	17762.52	17762.52

7. táblázat Azonos HRC keménységhez tartozó (C = 18, C = 20 és C = 22 konstansokkal számított) LMP adatok

	LMP1(18)	LMP2(18)	LMP1(20)	LMP2(20)	LMP1(22)	LMP2(22)
70	10826.86	11737.81	12172.86	13283.81	13518.86	14829.81
60	12517.55	13329.83	13863.55	14875.83	15209.55	16421.83
50	14208.24	14922.04	15554.24	16468.04	16900.24	18014.04
40	15898.72	16514.15	17244.72	18060.15	18590.72	19606.15
30	17589.62	18106.26	18935.62	19652.26	20281.62	21198.26

8. táblázat A két oldal azonos értékéhez tartozó C konstansok és LMP értékek

HRC	С	LMP(C)
70	8.89	4696.09
60	9.88	7050.90
50	10.86	9404.41
40	11.85	11756.90
30	12.83	14112.60

A 14. ábra (vastag vonallal és üres körökkel) szemlélteti a 1080 acél HRC keménységét az azonos LMP1 és LMP2 paraméter értéket szolgáltató hőmérséklet és időpárokból meghatározott C konstans függvényében. Az LMP(C) jelzésű függvény az a hely, ahol az LMP paraméterek két oldala éppen megegyezik. Minden más esetben a két eredmény eltérő.

3.3. Időszilárdság változása a vizsgálati hőmérséklet és idő függvényében egy Cr-Ni acélnál

Askeland D. R. "The Science and Engineering of Materials" című könyvének [3] 170. oldalán láthatók időszilárdságra vonatkozó mérési eredmények egy Cr-Ni acélnál 760-1090°C-on különböző ideig tartó vizsgálat (üzemelés) után. (15. ábra)

15. ábra Egy Cr-Ni acél időszilárdsága 760-1090°C-on különböző ideig tartó vizsgálat (üzemelés) után [3]

A 15. ábra egyenes szakaszain mért adatok alapján a Cr-Ni acél időszilárdsága látható – a 10^2 s és a 10^5 s időértékekhez tartozó (100) és (101) összefüggésekkel meghatározott $\sigma(T)$ hatványfüggvényekkel felrajzolt értékekkel – a 16. ábrán.

$$\sigma(10^{2} \text{ óra}) = 16097.84 - 475.6130 \cdot (T - 760^{\circ} \text{C})^{0.5822}$$
(100)

$$\sigma(10^{5} \text{ óra}) = 6692.99 - 1569.4402 \cdot (T - 760^{\circ} \text{C})^{0.2381}$$
(101)

16. ábra A Cr-Ni acél időszilárdsága, a két végén meghatározott $\sigma(T)$ hatványfüggvényekkel felrajzolt értékekkel

A 16. ábrán látható – a (100)-(101) és a (102) összefüggések is alapján számított – időszilárdság függvények alkalmassá tehetők arra, hogy kívánt időszilárdság értékeknél a különböző hőmérsékletértékekhez tartozó időértékeket is a (103) egyenlet segítségével meghatározzuk.

$$lg(\sigma(T, t_1)) = \left(\frac{lg(\sigma(T, 10^{\circ} \text{ óra})) - lg(\sigma(T, 10^{\circ} \text{ óra}))}{lg(10^{\circ}) - lg(10^{\circ})}\right) \cdot (lg(t_1) - lg(10^{\circ})) + lg(\sigma(T, 10^{\circ} \text{ óra}))^{(102)}$$

$$lg(t_1) = \frac{lg(\sigma(T, t_1)) - lg(\sigma(T, 10^5 \text{ óra}))}{lg(\sigma(T, 10^2 \text{ óra})) - lg(\sigma(T, 10^5 \text{ óra}))} \cdot (lg(10^2 \text{ óra}) - lg(10^5 \text{ óra})) + lg(10^5 \text{ óra})$$
(103)

Az időszilárdságot – a 10^2 és a 10^5 óra időértékekhez tartozó különböző hőmérsékletértékekkel a (24) egyenlet alapján – meghatározott Q/R lg(e) tényező függvényében a 17. ábra és a 9. táblázat szemlélteti. Az ábrán látható, hogy ebben az esetben a függvény jellege exponenciális. (A számított értékekre illeszkedő regressziós exponenciális görbe korrelációja: 1.)

A 18. ábra a (6) és a (77) egyenletek jobb és baloldali összefüggéseivel meghatározott DP11 és DP12 diffúziós paraméterek értékeit mutatja be. A 18. ábrán (és a 10. táblázatban is) látható, hogy az értékek egybeesnek. Mindkét oldal számítási eredményei azonosak.

A 19. ábra a (8) és az (82) egyenletek jobb és baloldali összefüggéseivel meghatározott DP21 és DP22 diffúziós paraméterek értékeit, a (10) és az (87) egyenletek jobb és baloldali összefüggéseivel meghatározott DP31 és DP32 diffúziós paraméterek értékeit, és a (49), illetve a (57) egyenletekkel (C = 18, C = 20 és C = 22 felvett értékekkel) meghatározott Larson-Miller paraméter számítások értékeit szemlélteti. $y = 198976e^{-0.002x}$ $R^{2} = 1$ 1000 1000 1000 14000 1900 24000 2900 34000 Q/R*lge

A 19. ábrán (és a 10. táblázat adataiból is) látható, hogy a DP2 és DP3 diffúziós paraméterek mindkét oldalának számítási eredményei azonosak (A számított eredmények ugyanarra az egyenesre esnek).

17. ábra Az időszilárdság a vizsgálathoz (üzemeléshez) tartozó hőmérséklet és időpárokból meghatározott (lge Q/R) tényező függvényében (Cr-Ni acél)

18. ábra Az időszilárdság a vizsgálathoz tartozó hőmérséklet és időpárokból meghatározott DP11 és DP12 diffúziós paraméterek függvényében (Cr-Ni acél)

Az LMP1 tényezők értékei (folytonos vonalak) a kisebb hőmérséklethez az LMP2 tényezők értékei (szaggatott vonalak) a nagyobb hőmérséklethez tartoznak. A 8. és 14. ábrákhoz hasonlóan a 19. ábra (és a 11. táblázat) is jól szemlélteti, hogy a Larson-Miller összefüggés bal oldala és jobb oldala mind a C = 18, mind a C = 20, mind a C = 22 konstanshoz tartozó számítási értékeknél különböző értékeket adnak eredményül.

Az LMP1 és LMP2 paraméterek nem egyezésének oka ebben az esetben is az, hogy az (1) Larson-Miller (Holomon-Jaffe) összefüggés elvi hibát tartalmaz. Egyetlen C érték kivételével az LMP paraméterek két oldalának értékei nem felelnek meg a diffúzió alapegyenletének, és nem is egyeznek meg egymással. A DP2 és DP3 paraméterek számításánál a különböző keménységértékekhez a 12. ábrán bemutatott Q/R lg(e) tényezők lettek figyelembe véve. Ez az oka annak, hogy a DP2 és DP3 egyenesek gradiense ennél a megoldásnál is kisebb.

19. ábra Azonos időszilárdsághoz tartozó hőmérséklet és időpárokból meghatározott DP21, DP22, DP31 és DP32 diffúziós paraméterek összehasonlítása különböző konstansokkal számított LMP értékekkel (Cr-Ni acél)

9. táblázat Az azonos σ időszilárdsághoz tartozó hőmérséklet és időadatok

σ [psi]	$T_1[^{\circ}K]$	t ₁ [óra]	$T_2[^{\circ}K]$	t ₂ [óra]	lge*Q/R
20000	1033	18.116	1363	6.004E-03	14846.164
10000	1033	4240.935	1363	1.25E-01	19325.725
5000	1033	992795.285	1363	2.61464	23805.289
2000	1033	1345964440	1363	145.103	29726.947
1000	1033	3.1509E+11	1363	3028.039	34206.522

10. táblázat Az azonos σ időszilárdsághoz tartozó (számított) diffúziós paraméterek adatai

σ [psi]	DP11	DP12	DP21	DP22	DP31	DP32
20000	17 107 413	17 107 413	16560.90	16560.91	12551.29	12551.30
10000	25 070 864	25 070 864	24269.96	24269.95	18393.88	18393.88
5000	33 034 316	33 034 316	31979.01	31979.01	24236.48	24236.48
2000	43 561 424	43 561 424	42169.82	42169.82	31959.96	31959.96
1000	51 524 892	51 524 892	49878.89	49878.89	37802.56	37802.56

A 19. ábrában látható azonos időszilárdsághoz tartozó hőmérséklet és időadatokat az 9. táblázat tartalmazza. A számított diffúziós paraméterek adatai a 10. táblázatban találhatók meg. A C = 18, C = 20 és C = 22 konstansokkal számított LMP adatok a 11. táblázatban kaptak helyet.

A 12. táblázat azokat a C konstans és LMP adatokat mutatja be, amelyeknél az LMP összefüggés két oldala azonos. Az LMP(C) értékek ebben az esetben is a (lg(e) Q/R) tényezővel egyeznek meg.

25. Jubileumi Hegesztési Konferencia

Budapest, 2010. május 19-21.

σ [psi]	LMP1(18)	LMP2(18)	LMP1(20)	LMP2(20)	LMP1(22)	LMP2(22)
20000	19893.58	21506.02	21959.58	24232.02	24025.58	26958.02
10000	22341.17	23304.47	24407.17	26030.47	26473.17	28756.47
5000	24788.76	25102.93	26854.76	27828.93	28920.76	30554.93
2000	28024.29	27480.36	30090.29	30206.36	32156.29	32932.36
1000	30471.88	29278.82	32537.88	32004.82	34603.88	34730.82

11. táblázat Az azonos σ időszilárdsághoz tartozó (C = 18, C = 20 és C = 22 konstansokkal számított) LMP adatok

12. táblázat A két oldal azonos értékéhez tartozó C konstansok és LMP értékek

σ [psi]	С	LMP(C)
20000	13.11	14846.2
10000	15.08	19325.7
5000	17.05	23805.3
2000	19.65	29726.9
1000	21.62	34206.5

A 19. ábra (vastag vonallal és üres körökkel) szemlélteti a Cr-Ni acél időszilárdságát az azonos LMP1 és LMP2 paraméter értéket szolgáltató hőmérséklet és időpárokból meghatározott C konstans (12. táblázat) függvényében. A 19. ábrában az LMP(C) jelzésű függvény az a hely, ahol az LMP paraméterek két oldala éppen megegyezik. Minden más esetben a két eredmény eltérő.

3.4. A tízes alapú logaritmussal meghatározott C konstans és a természetes logaritmussal számított C* konstans közötti összefüggés

A tízes alapú logaritmussal felírt (104) LMP egyenlet és a természetes alapú logaritmussal felírt (105) LMP* egyenlet alapján a C* konstans értéke a C konstanséból kiszámítható. A (106) egyenlettel kiszámítható C* konstans értékek olyanok, amelyeknél az LMP* paraméter értékei is mindkét oldalon megegyeznek a Q/R értékkel.

A 12. táblázat C adataiból számított C* eredményeket a 13. táblázat mutatja be.

$$LMP = \frac{Q}{R} lg(e) = T[C + lg(t)]$$
(104)

LMP* =
$$\frac{Q}{R}$$
 = T[C*+ln(t)] (105)

$$C^* = \frac{C + \lg(t)}{\lg(e)} - \ln(t) \tag{106}$$

29726.95

34206.52

	CRER				
σ[psi]	C*	С	LMP*	LMP
20	000	30.20	13.11	34184.55	14846.16
10	000	34.73	15.08	44499.13	19325.73
5	000	39.25	17.05	54813 70	23805.29

68448.82

78763.42

19.65

21.62

45.24

49.77

2000

1000

13. táblázat Az LMP* összefüggés két oldalán azonos értékéhez tartozó C* és C konstansok és LMP*, illetve LMP értékek

3.5. Az időszilárdság változása az LMP* és a DP2*, illetve DP3* diffúziós paraméterek függvényében a Cr-Ni acélnál

Az irodalomban [3] a hőmérséklet és időfüggvények mérési adatain kívül a σ időszilárdság értékei az LMP függvényében is megtalálhatók.

A 20. ábra ezt – az elvileg a 15 ábra adatai alapján készült diagramot mutatja be. A 20. ábra a Cr-Ni acél időszilárdságát különleges módon a természetes logaritmussal számolt LMP* 0,78 szorosa függvényében szemlélteti. A függvény ismeretében alkalom nyílik arra is, hogy az irodalom LMP értékekeit és a számítások alapjául szolgáló hőmérséklet-idő értékekből (14. táblázat) számított LMP értékeket összehasonlítsuk.

20. ábra A Cr-Ni acél időszilárdsága a 0,78 LMP* függvényében [3]

A 21. ábra vízszintes tengelyén a mérési eredményként megjelenő 0,78 LMP* értéket a (3) összefüggés alapján lehet értelmezni.

A 21. ábra a bal szélső egyenese a Cr-Ni acél időszilárdságát szemlélteti az irodalmi adatokra [3] illesztett adatokkal (15. táblázat). A 21. ábra bemutatja a bal oldali egyenes mellett az időszilárdságot a ($Q/R = LMP^*$) érték 0,78 szorosa-, és a természetes logaritmussal számolt DP2*, illetve DP3* diffúziós paraméterek (16. táblázat) 0,78 szorosa függvényében is (19. táblázat).

A 21. ábrában azért a DP2* és a DP3* értékek 0,78 szeresének megfelelő adatok szerepelnek, mert a diffúziós paraméterek közül az LMP* értékek nagyságrendileg a természetes alapú DP2* és DP3* paraméterek számszerű értékeivel vethetők össze.

21. ábra A Cr-Ni acél időszilárdsága az irodalomból [3] átvett 0,78 (Q/R = LMP*) paraméter függvényében illetve a 0.78 DP2* és a 0.78 DP3* diffúziós paraméterek függvényében

σ [psi]	T ₁	t_1	T ₂	t ₂	lge*Q/R	Q/R
20000	1033	18.116	1363	6.004E-03	14846.164	34184.6
10000	1033	4240.935	1363	1.25E-01	19325.725	44499.1
5000	1033	992795.285	1363	2.61464	23805.289	54813.7
2000	1033	1345964440	1363	145.103	29726.947	68448.8
1000	1033	3.1509E+11	1363	3028.039	34206.522	78763.4

14. táblázat A lg(e) Q/R és a Q/R értékek és az időszilárdság kapcsolata

15. táblázat Az irodalmi adatok számszerű értékei [3]

	0.78*LMP*
σ [psi]	(irodalom)
20000	29820.17
10000	32400.00
5000	34979.83
2000	38390.17
1000	40970.00

σ [psi]	DP11*	DP12*	DP21*	DP22*	DP31*	DP32*
20000	39 391 271	39 391 271	38132.9	38132.9	28900.4	28900.4
10000	57 727 794	57 727 793	55883.6	55883.6	42353.5	42353.5
5000	76 064 320	76 064 319	73634.4	73634.4	55806.5	55806.5
2000	100 303 881	100 303 879	97099.6	97099.6	73590.5	73590.5
1000	118 640 442	118 640 441	114850.4	114850.4	87043.6	87043.6

16. táblázat Az azonos σ időszilárdsághoz tartozó (számított) diffúziós paraméterek adatai

A 17. táblázat az azonos σ időszilárdsághoz tartozó (számított) LMP1* és LMP2* paraméterek adatait tartalmazza az irodalomból átvett konstans érték esetében (C*= 36).

17. táblázat Az azonos σ időszilárdsághoz tartozó (számított) LMP* és LMP paraméterek adatai

σ [psi]	LMP1*	LMP2*	C*	C	LMP1	LMP2
	(36/0.78)	(36/0.78)	U.	U	(20.04)	(20.04)
20000	50669.31	55935.51	46.15	20.04	22005.40	24292.48
10000	56305.10	60076.60	46.15	20.04	24452.99	26090.94
5000	61940.88	64217.71	46.15	20.04	26900.58	27889.40
2000	69390.97	69691.95	46.15	20.04	30136.12	30266.83
1000	75026.76	73833.05	46.15	20.04	32583.71	32065.29

A 18. táblázat azokat az azonos σ időszilárdsághoz tartozó (számított) LMP1* és LMP2* paraméterek tartalmazza, amelyeknél az LMP1* és az LMP2* értékek megegyeznek.

18. táblázat Az azonos σ időszilárdsághoz tartozó azonos értékű LMP* és LMP értékek a hozzájuk tartozó C* illetve C konstansok adatai

σ [psi]	C*	LMP1*(C*)	LMP2*(C*)	C	LMP1(C)	LMP2(C)
20000	30.20	34184.55	34184.55	13.11	14846.16	14846.16
10000	34.73	44499.13	44499.12	15.08	19325.73	19325.73
5000	39.25	54813.70	54813.70	17.05	23805.29	23805.29
2000	45.24	68448.82	68448.82	19.65	29726.95	29726.95
1000	49.77	78763.42	78763.42	21.62	34206.52	34206.52

A 19. táblázat a σ időszilárdsághoz tartozó természetes alapú diffúziós paraméterek 0,78 szeres értékeinek adatait mutatja be.

19. táblázat Az azonos σ időszilárdsághoz tartozó természetes alapú diffúziós paraméterek 0,78 szeres értékeinek adatai

σ [psi]	0.78 DP11*	0.78 DP12*	0.78 DP21*	0.78 DP22*	0.78 DP31*	0.78 DP32*
20000	30 725 192	30 725 191	29 744	29 744	22 542	22 542
10000	45 027 679	45 027 679	43 589	43 589	33 036	33 036
5000	59 330 170	59 330 169	57 435	57 435	43 529	43 529
2000	78 237 027	78 237 026	75 738	75 738	57 401	57 401
1000	92 539 545	92 539 544	89 583	89 583	67 894	67 894

A 20. táblázat a σ időszilárdsághoz tartozó – C = 36 konstans értékkel számított – természetes alapú LMP1* és LMP2* illetve a – C = 15,63 konstans értékkel számított tízes alapú LMP1 és az LMP2 értékek 0,78 szeres értékeinek adatait tartalmazza.

20. táblázat Az azonos σ időszilárdsághoz tartozó LMP* és LMP paraméterek 0,78 szeres értékeinek adatai

σ [psi]	0.78 LMP1*	0.78 LMP2*	0.78 C*	0.78 C	0.78 LMP1	0.78 LMP2
20000	39 522	43 630	36.00	15.63	17 164	18 948
10000	43 918	46 860	36.00	15.63	19 073	20 351
5000	48 314	50 090	36.00	15.63	20 982	21 754
2000	54 125	54 360	36.00	15.63	23 506	23 608
1000	58 521	57 590	36.00	15.63	25 415	25 011

A 21. táblázatban a σ időszilárdsághoz tartozó azonos értékű LMP* és LMP paraméterek 0,78 szeres értékeinek adatai vannak elhelyezve.

21. táblázat Az azonos σ időszilárdsághoz tartozó azonos LMP* és LMP paraméterek 0,78 szeres értékeinek adatai

σ [psi] 0.78 C*	0.78 LMP1*	0.78 LMP2*	0.78 C	0.78 LMP1	0.78 LMP2	
	0.78 C	(C*)	(C*)	0.78 C	(C)	(C)
20000	23.55	26 664	26 664	10.23	11 580	11 580
10000	27.09	34 709	34 709	11.76	15 074	15 074
5000	30.62	42 755	42 755	13.30	18 568	18 568
2000	35.29	53 390	53 390	15.33	23 187	23 187
1000	38.82	61 435	61 435	16.86	26 681	26 681

21. ábrában üres körrel jelzett módon a mindkét oldalon azonos LMP* értéket szolgáltató 0.78 LMP1*(C*) és 0.78 LMP2*(C*) függvények azonossága jól látható. A természetes alapú LMP* számítással (C=36 értékkel) meghatározott 0.78 LMP1* és 0.78 LMP2* értékek a 21. ábrában is látható módon eltérnek egymástól. A 21. ábrában elhelyezve a természetes alapú DP2* és DP3* paramétereket látható, hogy a DP2* és a DP3* paraméterek – Q/R tényező különböző hőmérsékletű osztótényezője miatt – eltérnek egymástól, ugyanakkor mindkét oldalon ugyanolyan számítási eredményt adnak.

3.6. Az diffúziós paraméterek és a Sherby-Dorn (S-D) paraméterek kapcsolata

Az irodalomban [10] található egy az LMP-hez hasonló paraméter is, amelyik a Sherby-Dorn (P_{SD}) paraméter elnevezést viseli, és amelyet általános alakban (és a Q cal/mol mértékegységű alakjában is) a (107) összefüggés szemléltet. A P_{SD} paraméter nem más, mint a (18) diffúziós egyenlet egyik oldalának a tízes alapú logaritmusa, ahol a 0,217 szorzó esetén a Q aktiválási energia mértékegysége: cal/mol.

$$P_{SD} = lg(t_1) - lg \cdot \frac{Q}{R} \cdot \frac{1}{T_1} = lg(t_1) - \frac{0.217 \cdot Q}{T_1} = lg(t_2) - \frac{0.217 \cdot Q}{T_2}$$
(107)

A (107) egyenletnek van a természetes alapú megfelelője is, amely a (108) egyenlet alakját veszi fel.

$$P_{SD}^{*} = \ln(t_1) - \frac{Q}{R} \cdot \frac{1}{T_1} = \ln(t_2) - \frac{Q}{R} \cdot \frac{1}{T_2}$$
(108)

A (107) egyenlet bal oldalán a lg(e) Q/R tényezőt kifejezve a (109) egyenletek jönnek létre.

$$\lg e \cdot \frac{Q}{R} = T_2 \cdot \left(\lg(t_2) - P_{SD} \right) \qquad \lg e \cdot \frac{Q}{R} = T_1 \cdot \left(\lg(t_1) - P_{SD} \right) \qquad (109)$$

A (108) egyenlet bal oldalán a Q/R tényezőt kifejezve a (110) egyenletek jelenek meg.

$$\frac{Q}{R} = T_2 \cdot \left(\ln(t_2) - P_{SD}^* \right) \qquad \frac{Q}{R} = T_1 \cdot \left(\ln(t_1) - P_{SD}^* \right)$$
(110)

A dolgozatban bemutatott diffúziós paraméterek (20) és (21) alapegyenleteinek bal oldalán a lg(e) Q/R tényezőt illetve a Q/R tényezőt kifejezve a (111) és (112) egyenletek adódnak ki.

$$\lg e \cdot \frac{Q}{R} = T_1 \cdot \left(P_D - \lg(t_2) \right) \qquad \lg e \cdot \frac{Q}{R} = T_2 \cdot \left(P_D - \lg(t_1) \right) \tag{111}$$

$$\frac{Q}{R} = T_1 \cdot \left(P_D^* - \ln(t_2) \right) \qquad \frac{Q}{R} = T_2 \cdot \left(P_D^* - \lg(t_1) \right)$$
(112)

A (109) és (111), illetve a (110) és (112) egyenletek mindkét oldalán az azonos hőmérséklet szorzókkal rendelkező tagokat egyenlővé téve mindkét oldalon a (113) és a (114) összefüggés keletkezik.

$$P_{\rm D} = lg(t_1) + lg(t_2) - P_{\rm SD}$$
(113)

$$P_{\rm D}^{*} = \ln(t_1) + \ln(t_2) - P_{\rm SD}^{*}$$
(114)

A (20) diffúziós alapegyenletből képzett PD1, PD2 és PD3 diffúziós tényezők viszonyát a Sherby-Dorn paraméterhez a (115), (116) és (117) egyenletek szemléltetik.

$$PD1 = T_1 \cdot T_2 \cdot P_D = T_1 \cdot T_2 \cdot [lg(t_1) + lg(t_2) - P_{SD}]$$
(115)

$$PD2 = T_2 \cdot P_D = T_2 \cdot [lg(t_1) + lg(t_2) - P_{SD}]$$
(116)

$$PD3 = T_1 \cdot P_D = T_1 \cdot [lg(t_1) + lg(t_2) - P_{SD}]$$
(117)

A (21) diffúziós alapegyenletből képzett PD1*, PD2* és PD3* diffúziós tényezők viszonyát a Sherby-Dorn paraméterhez a (118), (119) és (118) egyenletek mutatják be.

$$PD1^{*} = T_{1} \cdot T_{2} \cdot P_{D}^{*} = T_{1} \cdot T_{2} \cdot \left[ln(t_{1}) + ln(t_{2}) - P_{SD}^{*} \right]$$
(118)

$$PD2^{*} = T_{2} \cdot P_{D}^{*} = T_{2} \cdot \left[ln(t_{1}) + ln(t_{2}) - P_{SD}^{*} \right]$$
(119)

$$PD3^{*} = T_{1} \cdot P_{D}^{*} = T_{1} \cdot \left[ln(t_{1}) + ln(t_{2}) - P_{SD}^{*} \right]$$
(120)

Összefoglalás

A dolgozat három olyan új diffúziós paramétert mutatott be, amelyek bármelyike alkalmas a hőmérsékletek és időértékek meghatározására azonos diffúziós folyamat esetén ugyanazon a helyen, ugyannál a koncentrációnál. A dolgozat demonstrálta, hogy a bemutatott háromféle diffúziós paraméter az egyenletek mindkét oldalánál, mind a tízes alapú logaritmussal, mind a természetes logaritmussal végzett számításnál pontos eredményt szolgáltat. A dolgozat bizonyította, hogy a gyakran alkalmazott Larson-Miller, illetve Holomon-Jaffe paraméterekkel elvégzett LMP számítások olyan C és C* értékeknél adnak csak pontos eredményt, amelyek alkalmazása a gyakorlatban nem szokásos. Két megeresztési folyamat és egy időszilárdsághoz kapcsolódó folyamat mérési eredményeinek felhasználásával a dolgozat szemléltette a bemutatott diffúziós paraméterek jóságát és a diffúziós paraméterek, illetve a korábban alkalmazott LMP és LMP* paraméterek közötti eltéréseket. A dolgozat zárófejezete bemutatta az LMP paraméterrel szemben a diffúziós folyamatokat helyesen leíró (a diffúziós alapegyenleteknek megfelelő) Sherby-Dorn (P_{SD}) paraméter- és a három új diffúziós paraméter közötti kapcsolatot is.

Irodalomjegyzék

- Dudás Z.: Azonos diffúziós állapothoz tartozó technológiai paraméterek meghatározása, Anyagvizsgálók Lapja, 2007/1, Budapest, 9-12. old.
- [2] Z. Dudás: Equations and Verification of New Diffusion Parameters, in Materials Science, Testing and Informatics IV, Trans Tech Publications Ltd, Switzerland, 2008, pp. 293-297
- [3] Askeland D. R.: The Science and Engineering of Materials, PWS-KENT Publishing Company, Boston, 1989, pp. 169-170
- [4] Verő J.: Fémtan, Tankönyvkiadó, Budapest, 1973, 105-107. old.
- [5] Prohászka J: Bevezetés az anyagtudományba, Tankönyvkiadó, Budapest, 1988, 105-107. old.
- [6] Verő J.: Fémtan, Tankönyvkiadó, Budapest, 1973, 353. old.
- [7] Prohászka J: Bevezetés az anyagtudományba, Tankönyvkiadó, Budapest, 1988, 197-198. old.
- [8] Verő J.: Fémtan, Tankönyvkiadó, Budapest, 1973, 364. old.
- [9] R. A. Flinn, P. K. Trojan: Engineering Materials and their Applications, Third Edition, Houghton Mifflin Company, Boston, 1986, p. 233
- [10] N. E. Dowling: Mechanical Behavior of Materials, Third Edition, Upper Saddle River, New Jersey 07458, 2007, pp. 792-794